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Abstract— This paper addresses the application of rotor speed 

signal for the detection and diagnosis of ball bearing faults in 
rotating electrical machines. Many existing techniques for bearing 
fault diagnosis (BFD) rely on vibration signals or current signals. 
However, vibration- or current-based BFD techniques suffer from 
various challenges that must be addressed. As an alternative, this 
paper takes the initial step of investigating the efficiency of rotor 
speed monitoring for BFD. The bearing failure modes are 
reviewed, and their effects on the rotor speed signal are described. 
Based on this analysis, a novel bearing fault diagnosis technique, 
the Rotor Speed-Based Bearing Fault Diagnosis (RSB-BFD) 
method under variable speed and constant load conditions is 
proposed, to provide a benefit in terms of cost and simplicity. The 
proposed RSB-BFD method exploits the Absolute Value-based 
Principal Component Analysis (AVPCA), which improves the 
performance of classical PCA by using the absolute value of 
weights and the sum square error. The performance and 
effectiveness of the RSB-BFD method is demonstrated using an 
experimental setup with a set of realistic bearing faults in the 
outer race, inner race, and balls.  
 

Index Terms—Rotor speed, bearing fault diagnosis, variable 
speed, principal component analysis, sum square error.  
 

I. INTRODUCTION 
AULT diagnosis techniques are becoming more important 
as more engineering processes are automated, while the 
manpower needed to operate and supervise processes is 

reduced. Because rotating electrical machines (REMs) are at 
the heart of most engineering processes and are designed for 
tighter margins, there is a growing need for fault diagnosis for 
the sake of reliability. Different faults may occur in an REM, 
which can be classified as stator faults, rotor faults, static and 
dynamic eccentricities, and bearing faults [1]. Based on an 
IEEE motor reliability study for large motors above 200 hp [2], 
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bearing faults are the most significant single cause of motor 
failure (41%), followed by stator faults (37%), and rotor faults 
(10%). In fact, rolling bearings are used not only in motors but 
also in almost every industrial process that involves rotating 
and reciprocating machinery [3].  

Existing techniques for bearing fault diagnosis (BFD) 
require more data acquisition equipment and additional 
measurements, such as vibrations, temperature, acoustic 
emissions, and stator current monitoring [4]. In particular, 
recent surveys [5-10] indicate a clear tendency toward the 
vibrations monitoring of REMs. However, despite the fact that 
vibration-based BFD techniques have been successfully 
applied and are increasingly deployed in industry [11-14], 
challenges still exist that must be addressed. Vibration sensors, 
such as accelerometers, are mounted on the surface of system 
components, which are installed deep inside machinery and are 
difficult to access during real-time operation. The sensors and 
equipment are also inevitably subject to failure, which could 
cause additional problems with system reliability and result in 
additional operating and maintenance costs [15]. Moreover, in 
the case of varying speeds, the vibration signal from the 
bearings is affected by operation, which makes diagnosis 
difficult. These difficulties are due to the variation of diagnostic 
features caused primarily by speed variations, low energy of 
sought features, and high noise levels. 

As an alternative, several researchers [15-17] have proposed 
stator current-based techniques under the assumption that the 
machine operates at a constant supply frequency at steady state. 
Unfortunately, this assumption may be unrealistic in an actual 
system. Stator current-based approaches also suffer from the 
fact that, stator current signals can be used only if there is a 
large failure. Note that detection of an extremely early incipient 
fault is essential in BFD because a minor bearing fault can 
rapidly become a serious failure. 

To overcome the challenges with existing BFD techniques 
based on vibration or stator current signals, this paper explores 
the application of rotor speed signal to the detection and 
diagnosis of ball bearing faults in REMs. The proposed rotor 
speed-based bearing fault diagnosis (RSB-BFD) method 
assumes variable rotor speed conditions and only uses rotor 
speed measurements. Since speed signals are reliable and easily 
accessible as compared to vibration signals, this approach can 
be beneficial in terms of low cost, simplicity, and reliability. 
However, it is important to note that the frequency domain 
analysis of speed signal shows no significant distinction 
between different bearing faults, which is the primary reason 
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why rotor speed-based BFD has not been used. To solve this 
problem, we propose the Absolute Value-based Principal 
Component Analysis (AVPCA), in which classical Principal 
Component Analysis (PCA), a well-known feature extraction 
method, is modified to calculate the PCA bases using the 
absolute value of weights and the sum square error distances.  

This paper is organized as follows. In Section II, an analysis 
of rotor speed signals under bearing faults is presented. Section 
III introduces the AVPCA, which is used for the proposed 
RSB-BFD method. In Section IV, the proposed AVPCA-based 
algorithm for bearing fault detection and diagnosis is presented, 
where experimental results are shown in Section V. Finally, a 
discussion and conclusion are presented in section VI. 

 

II. ROTOR SPEED SIGNAL UNDER BEARING FAULTS  

A. Bearing fault types 
Based on the fault classification in [17], bearing faults can be 

categorized into two types: 1) single-point faults, which are 
defined as a visible, single fault, and 2) generalized roughness, 
which refers to a damaged bearing. A single-point fault 
produces a characteristic fault frequency that depends on the 
surface of the bearing that contains the fault. Because most 
rotating machines use rolling-element bearings that consist of 
an outer race and an inner race, single-point faults in a bearing 
considered in this study include the following: (1) outer-race 
fault (ORF), (2) inner-race fault (IRF), and (3) ball bearing fault 
(BBF), as shown in Fig. 1. The bearing fault-free case is 
denoted by BFF.  

 
A bearing fault introduces specific frequency components 

that depart from the normal distribution, which subsequently 
increases the kurtosis value. Fault-related torque oscillations at 
particular frequencies are often related to the shaft speed. The 
characteristic bearing fault frequency fc in different bearing 
faults are given by the following relationships [11]:  
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where fout is the outer-race fault frequency, fin is the inner-race 
fault frequency, fball is the ball fault frequency, db is the ball 
diameter, dP is the pitch ball diameter, Nb is the number of balls, 

β is the ball contact angle (with the races), and fr is the 
mechanical rotor frequency.  
 

B. Effect of bearing faults on rotor speed signal 
In this section, additional details on the effect of a bearing 

fault on the rotor speed will be introduced, which accounts for 
fault-related variable speed. The method used to study the 
influence of the bearing fault on the rotor speed is related to the 
magnetomotive force (MMF). To the author’s knowledge, this 
method has not yet been applied to bearing fault diagnosis. The 
load torque TL can be described by [16] 
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  (2) 

 
where T0 is a constant component, and Tc is the amplitude of the 
bearing fault-related torque variations. By applying the 
mechanical equation of the machine, the torque variations, T(t), 
affect the motor speed wr(t) as follows: 
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where Tm is the electromagnetic torque produced by the 
machine, and J is the total inertia of the system machine load. 

In steady state, the motor torque is assumed to be equal to the 
constant part of the load torque Tm=T0, which leads to 
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Thus, theoretically, the rotor speed under bearing faults 

(ORF, IRF, and BBF) consists of a constant component wr0
 and 

a sinusoidally varying component. 
The experimental rotor speed signal under the different 

bearing faults is shown in Fig. 2, which shows that this effect 
can be approximated by a sinusoidal form plus a noise 
component. Thus, a mathematical development of (4) is 
considered as follows: 

From (2) and (4), the rotor speed yields 
 

0
( ) sin(2 )

2
c

r c r
c

Tw t f t w
J f

p h
p

-
= + + , (5) 

 
where η is white noise with zero mean and infinite variance. By 
considering fout, fin, and fball given by (1) in the bearing fault 
cases, the rotor speed wr(t) becomes 
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Fig. 1. Ball bearing geometry and the possible defects.  
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where the D’s are defined by 
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Equation (6) shows that the bearing faults’ effect on the 

speed signal can be approximated by a sinusoidal form, which 
depends on the bearing geometry dp, db, Nb, and the contact 
angle β with a noisy component η.  

 

III. THE PROPOSED AVPCA FOR BEARING FAULT DIAGNOSIS 
Although the use of rotor speed signals offers various 

benefits as discussed in the introduction, it is important to note 
that frequency domain analysis of the speed signal may be 
ineffective.  

 
Fig. 3 shows the time-domain experimental results of the 

speed signal under healthy and faulty bearing conditions and 
their power spectral density frequency response. Analyzing the 
frequency domain results shows that the effect of different 
bearing faults on the rotor speed signal is extremely similar 
even in the normal situation. Thus, frequency domain methods 
for BFD that are based on rotor speed signal are not wise 
choices. Instead, feature extraction methods [18-22], such as 
PCA, are preferable because the features of the speed signal 
under different healthy conditions exhibit different patterns.  

PCA has been widely used as a tool to detect and diagnose 
faults [23-31]. However, classical PCA-based fault detection 
and diagnosis methods suffer from several drawbacks. First, the 

detection index is sensitive to the measurement data (presence 
or absence of noise and/or disturbances). Second, classical 
PCA cannot detect and/or diagnose the fault properly in a 
dependent failure case [23]. To overcome this problem, several 
researchers have proposed robust PCA methods [26]. However, 
researchers have only focused on the detection index and 
covariance matrix and involved more complicated 
mathematical changes.  

In this work, to make PCA more appropriate for online BFD 
with no mathematical complication, we propose AVPCA, 
where the classical PCA is improved by calculating the PCA 
bases using the absolute value of the weights and SSE 
distances. Considering the SSE distance between the training 
PCA base and the test base, the fault can be assigned to a class 
under the released hypothesis of the minimum of the total SSE 
distance. Consider the example given in Fig. 4a, where random 
data in 2D are supposed. Two retained principal components, 
PC1 and PC2, are used to project the data to the PCA subspace, 
as shown in Fig. 4b. Let A (xa, ya) and B (xb, yb) be two data sets 
from the training set that belong to class 1, and let A’ (xa’,ya’) 
and B’ (xb’,yb’) be two data sets from the same class 1 but 
obtained from new, unknown data from the test set.  

 
From trial observations and after analyzing different sets of 

measurements, as shown in Fig. 4c, A’ and B’ will have the 
following coordinates:  
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Computing the SSE distance ξ between these two values 

gives 
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and the total SSE distance Ξ will be 
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Thus, the total SSE distance is magnified instead of 
minimized, which occurs when classical PCA is used. To 
address this situation, the absolute value of the bases is used in 
calculating the SSE distance, as shown below: 
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Fig.3. Rotor speed signal in the time and frequency domains under healthy 
(a) and different bearing fault (b, c, and d) conditions. 
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Fig.2. Measurements of the rotor speed under constant load for different 
bearing faults with Ts = 58.61 μs, wr=2500 rpm and er=10-4. 

 
                (a)                                     (b)                                   (c) 
Fig. 4.  Plot of random data considered for the example.  



0278-0046 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2015.2416673, IEEE Transactions on Industrial Electronics

 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 
 

4

 
2 2' 2

2 2' 2

2 2' 2

2 2' 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a

a

b

b

x a a a a

y a a a a

x b b b b

y b b b b

abs x abs x abs x abs x

abs y abs y abs y abs y

abs x abs x abs x abs x

abs y abs y abs y abs y

x e e

x e e

x e e

x e e

ì = - = - ± - =
ï
ï = - = ± - =ï
í
ï = - = ± - =
ï
ï = - = - ± - =î

, 

 
The total SSE will be 
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Equation (10) indicates that by using the absolute value in 

the PCA, the total SSE distances are always minimized 
regardless of the bases signs. Rotor speed-based BFD using the 
proposed AVPCA is described in the following Section.  

 

IV. THE PROPOSED RSB-BFD USING AVPCA 
The presence of bearing faults influences characteristic 

parameters, which cause the parameters to vary. A sample 
formed with the variations of the faulty parameters will contain 
specific information related to the fault itself. AVPCA extracts 
a number of characteristic vectors from these samples that are 
mutually orthogonal. To develop the AVPCA model for BFD, 
the study is divided into two procedures: (i) an offline training 
procedure and (ii) an online fault detection and diagnosis 
procedure. Hence, the collected speed signal data set is divided 
into two parts: training data (known data) and testing data 
(unknown data). The training data are regarded as the historic 
data and used to build the training database, whereas the testing 
data are used to verify the performance of the proposed 
RSB-BFD. 

 

A. Offline training procedure 
Table I describes the offline training procedure, which 

contains the AVPCA steps. 

 

 
The overall offline training procedure of the proposed 

AVPCA is summarized in Fig. 5. 
 

 
B. Online fault detection and diagnosis procedure 

After the offline training of the system in both healthy and 
faulty cases, the algorithm is ready for the online fault detection 
and diagnosis procedure, which is composed of the steps 
described in Table II. 

 
 

Fig. 5.  Overview of the offline training procedure based on AVPCA.  
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m
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Step 5. Select the number of eigenvectors p based on the cumulative 
percent of variance (CPV) approach with a precision of CPV (p) ≥ 99.9% 
defined by  
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and the remaining n-p eigenvectors represent the 

direction of the faulty measurements, the residual subspace E, which is 
defined by 
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Hence, the residual weights rhi
 will be defined by 
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where χm
i_q is the weight vector describing the qth database. 

Step 7. Generate the PCA training database matrix 

1 2, , ,m m m m
pbM c c cé ù= ë ûL .                                                         (20)  

 
 

TABLE I 
OFFLINE TRAINING PROCEDURE STEPS BASED ON AVPCA  

Step 1. Obtain a sample of the n output data from the rotor speed signal at 
instant k for both the fault-free case and the abnormal cases. The training 
vectors Wrj

m(k) will be defined by  

( ) ( ) ( ) ( )
1 2

, , ,m m m m
nj

T
r r r rW k w k w k w ké ù= ë ûL ,                  (11) 

where m is the number of all possible faulty cases and the fault-free case, 
which are known as clusters. In our application, m=1 for the BFF cluster, 
m=2 for the ORF cluster, m=3 for the IRF cluster, and m=4 for the BBF 
cluster. And j=1,…,n, where n is the number of output rotor speed samples.  
Step 2. Calculate the mean vector μm of each training vector and its 
orthogonal; then compute the orthonormal data vectors:   

( ) ( )( )j
m m m

r rO k orth W k m= - .                                            (12) 

Step 3. Compute the normalized covariance matrix Cnor
m

 
for the 

orthonormal training data vectors: 
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n
= × .                                                (13) 
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The total SSE is given by Ξ= ξ1 + ξ2 + … +ξn, which will be 

minimized at each stage of the cluster analysis. Considering a 
predefined threshold ρ, the fault can be detected. The overall 
online fault detection and diagnosis procedure for the proposed 
RSB-BFD is summarized in Fig. 6. 

 
Once the new test data set has been projected onto the 

AVPCA subspace, the fault has been detected. The fault 
diagnosis procedure is then used to diagnose a detected fault by 
projecting the new set of the test data into the subspaces 
spanned by the principal component vectors of the training set. 
If the similarity between the set and subspace is greater than the 
similarity with any other class, then the membership of the new 
set in a class can be determined using the SSE distance because 
this distance can achieve better extraction results with less 
training compared with other distances [32]. The fault is 
assigned to a class under the given hypothesis of the minimum 
distance SSE, which is used as a basis for testing and further 
investigation of the fault diagnosis task.  
 

V. EXPERIMENTAL RESULTS AND DISCUSSION  

A. Experimental setup  
To evaluate the performance of the proposed RSB-BFD 

method, an experimental setup was built with a 750W- BLDC 

motor powered by a TMC-7 BLDC motor driver. Rotor speed 
was the only quantity measured. The schematic diagram of the 
experimental setup is illustrated in Fig. 7. Two ball bearings 
(NSK 6204) with eight balls were integrated in the 
experimental setup. The tested ball bearings were artificially 
damaged to produce flaws on the outer race, inner race, or ball. 
The flaws consisted of 1mm holes that were drilled axially 
through the outer and inner raceways and the ball (see Fig. 1 
and Fig. 8). A flywheel was added to the experimental setup to 
generate a constant load torque. All measured quantities were 
collected with an NI cDAQ-9178 8-slot USB chassis. The 
NI9411 module was used for the rotor speed signal. The 
measured data were sampled at 17.06 kHz and processed using 
MATLAB R2012a.  

 

 

 
 
The rotor speed signal for the proposed algorithm was 

measured with an incremental encoder type E60H NPN open 
collector output at 1024 pulses per revolution with a maximum 
allowable revolution of 6000 rpm.  

Two different environments were considered: a constant 
speed environment and a variable speed environment. First, a 
constant motor speed of wr=2500 rpm was considered while the 
bearing fault detection and diagnosis algorithm was running, as 
shown in Fig. 9.  

 
 

B. Offline training procedure  
For the offline training procedure, a set of historical process 

data from the motor rotor speed signal under different faulty 
bearing conditions (ORF, IRF, and BBF) and the healthy 
condition (BFF) were first measured and sampled to form the 
training data vectors ( )

j

m
rW k given by (11).  
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Fig. 6.  Overview of the proposed online procedure for RSB-BFD. 

TABLE II 
ONLINE FAULT DETECTION AND DIAGNOSIS PROCEDURE 

Step 8. A new set of data, called the data test vector Wr
new(k), is projected 

onto the AVPCA subspace following the previous steps 1 to 6.  
Step 9. Generate their AVPCA test database matrix 

1 2, , ,new new new new
pbM c c cé ù= ë ûL .                                                         (21) 

Step 10. Compute the SSE as 

 2m new m
b bM Mx = - .                                                               (22) 

 

 

1. BLDC motor driver 2. BLDC motor        3. Shaft coupling             
4. Ball bearing                 5. Flywheel           6. Incremental encoder  
7. Tested ball bearing      8. Base  

 

Fig. 7.  Schematic diagram of the experimental setup. 

 
               (a)                           (b)                            (c)      

 

Fig. 8.  Faulty ball bearings with a single hole: (a) IRF, (b) ORF, and (c) BBF.
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Fig. 9.  Rotor speed signal from the incremental encoder output under a 
constant speed environment. 
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The SCREE [33] plot indicates that the number of PCs can 
be chosen as one (p=1). Using the CPV approach to obtain a 
precision of 99.9%, the number of principal components is 
fixed at three (p=3), as shown in Table III. The AVPCA 
projection reduces the original n-space to a three-dimensional 
subsystem in p-space. 

 
Fig. 10 shows the variation of the residual weights rhi

 of the 
AVPCA subspace in 3-space for the healthy case and the three 
faulty cases (ORF, IRF, and BBF). It is clear that ball bearing 
faults cannot be detected using only the residual weights.  

 
C. Online fault detection and diagnosis results under constant 
speed 

After performing the training procedure in the healthy and 
faulty cases, a new set of measurements from the rotor speed 
signal were considered to form the data test vector Wr

new(k) that 
contains the unknown rotor speed signal measurements. Faults 
can thus be detected by evaluating the SSE distance between 
the data test vector and training vectors, as described in (22). By 
evaluating the SSE distance variation, computing the total SSE, 
and by considering its minimum, the fault was detected and 
then diagnosed. The results of the total SSE distance with the 
proposed AVPCA for RSB-BFD at a constant speed condition 
are summarized in Table IV. 

 

 
D. Online fault detection and diagnosis results under variable 
speed 

Bearing fault detection and diagnosis under variable speed is 
more challenging though more realistic. Thus, as shown in Fig. 
11, four scenarios with different profiles of variable motor 
speed wr were considered while the RSB-BFD algorithm was 
running.  

 
Fig. 11 shows the variation of the SSE distance between the 

unknown data test vector Wr
new(k) on the non-faulty case and 

the training vectors Wr
m(k) (where m = 1,2,3,4,) using the 

proposed AVPCA as the RSB-BFD fault detection method 
under the four scenarios with different speed profiles and fault 
cases. In this figure, the SSE distance for the proposed AVPCA 
can clearly be used to detect any of the faults in all of the 
measurement sets. The SSE distance variation in the BFF case 
was always less than the SSE distance variation for all the fault 
cases (ORF, IRF, and BBF).  

Fig. 12 and Table V depict, respectively, the SSE distance 
variation and the total SSE distance in tested cases (2), (3), and 
(4) by the proposed RSB-BFD for fault diagnosis. Fig. 12 
shows the SSE distance calculated by AVPCA for bearing 
faults diagnosis for the four different scenarios. It can be seen 
that in each scenario, the minimum in case (a): ORF is the black 
line that represents the evaluation of the SSE distance when the 
outer-race fault was considered for the test data. The minimum 
in case (b): IRF is the green line that represents the evaluation 
of the SSE distance when the inner race fault was considered 
for the test data. In addition, for the minimum in case (c): BBF 
is the magenta line that represents the evaluation of the SSE 
distance when the ball fault was considered for the test data. 
Thus, it is clear that the minimum of the SSE corresponds to the 
faulty case. 

Furthermore, Table V shows the total SSE distance 
calculated by AVPCA for bearing fault diagnosis under the four 
different scenarios. It can also be observed that in each 
scenario, for the ORF case, the minimum of the total SSE is 
case (2), which corresponds exactly to the outer-race fault case. 
For the IRF case, the minimum of the total SSE is case (3), 
which is equal to the inner-race fault case. Similar results were 
obtained for the BBF case, where the minimum of the total SSE 
is case (4), which exactly corresponds to the ball fault case. 
Hence, the detected fault can be diagnosed in all four 
considered scenarios with different varying speed profiles.  

TABLE IV. SUMMARY OF TOTAL SSE UNDER CONSTANT SPEED  
 Total SSE distance to BFD 

1 2 3 4 
Training databases 

in the different 
bearing conditions 

BFF 0.00488 0.01393 0.01231 0.03034 
ORF 0.00910 0.00603 0.01751 0.03885 
IRF 0.01096 0.01374 0.01137 0.03953 
BBF 0.01010 0.01340 0.01222 0.02460 
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Fig.11. SSE distance calculated by AVPCA under variable speed with four 
scenarios. 

TABLE III 
CPV PRECISION OF THE EIGENVALUES 

PC number 1 2 3 
Eigenvalues  3.74*103 3.63*10-12 3.49*10-12 

CPV[%] 99.7803 99.8475 99.8983 
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Fig. 10. Variation of residual weights rwi . 
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Analysis of the SSE distance evaluation in Fig. 11 and Fig. 

12 shows that the SSE evaluation generally increases during the 
transient part compared with that of the steady-state part. 
Therefore, the bearing fault has a greater effect on the rotor 
speed in the variable speed environment than in the constant 
speed environment. 

 
E. Comparison of AVPCA and classical PCA for RSB-BFD  

The main drawback in applying the classical PCA algorithm 
for fault detection and diagnosis is the sensitivity of the PCA 
model to the measurement data and the dependency or 
independency of the measured data. Furthermore, it has been 
shown that PCA cannot satisfactorily perform detection if the 
number of data sets is large, whereas a PCA model constructed 
from a small number of data sets can successfully detect and 
diagnose a fault [34]. Unfortunately, in BFD applications, the 
system is highly noisy, and the number of data sets is very large 
due to the higher sampling rate (order of 10-5s).  

This section highlights the benefit of AVPCA over the 
classical PCA. The classical PCA and proposed AVPCA bases 

 
 
 
 
 
 
 
 
 
 
 
 

were performed on 10 different sets of measurements for each 
fault and healthy case under constant speed. In addition, under 
the variable speed environment, each fault and healthy case was 
tested with 20 different sets of measurements, where each fault 
case consisted of five measurement sets.  

For the 30 different sets of measurements, the eigenvalue 
plot and the AVPCA score plot (Fig. 13) from the analysis of 
the bearing experiments under normal and faulty conditions 
exhibit some overlap between the BFF, BBF, and IRF cases. 
This overlap in the eigenvalue clusters of healthy and different 
fault cases affects the effectiveness of the classical PCA for 
bearing fault detection and diagnosis. 

 
Details of the comparison between AVPCA and the classical 

PCA under the constant speed and variable speed environments 
for BFD are presented in Fig. 14 with a summary in Table VI. 

 

 
 
Case A. Constant speed environment: The proposed AVPCA 

can detect the fault in 9 measurement sets and fails in only one 
case (measurement set 5), whereas the classical PCA fails in 
three sets, which is due to the weight’s sign variation. For 
additional clarity, let us consider measurement set 1 for both 
algorithms. The total SSE is equal to the square norm of the 
difference between the training database vectors Mb

m and the 
test database vectors Mb

new. In set 1, Mb
m is positive (let Mb

m be 

TABLE V. SUMMARY OF TOTAL SSE UNDER VARIABLE SPEED 
 Total SSE distance for bearing fault detection and diagnosis 
          Tested-cases 

 

Trained-cases 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

              Tested-cases 
 

Trained-cases 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

Training 
databases 

in the 
different 
healthy 
bearing 

conditions 

 
Scenario. 1 

BFF 0.035 0.057 0.055 0.080  
Scenario.3 

BFF 0.037 0.062 0.055 0.101 
ORF 0.057 0.025 0.060 0.085 ORF 0.062 0.041 0.068 0.096 
IRF 0.082 0.060 0.028 0.076 IRF 0.083 0.068 0.034 0.075 
BBF 0.080 0.085 0.076 0.041 BBF 0.101 0.096 0.075 0.034 

 
Scenario. 2 

BFF 0.032 0.149 0.157 0.24  
Scenario.4 

BFF 0.031 0.382 0.096 0.503 
ORF 0.149 0.03 0.163 0.253 ORF 0.382 0.028 0.383 0.161 
IRF 0.235 0.163 0.027 0.211 IRF 0.145 0.383 0.036 0.473 
BBF 0.24 0.253 0.211 0.068 BBF 0.503 0.161 0.473 0.042 

 
 

TABLE VI. SUMMARY OF RSB-BFD EFFICIENCY UNDER BOTH CONSTANT 
AND VARIABLE SPEED ENVIRONMENTS 

 Constant speed Variable speed 
Task 

 

Method 
Fault 

detection 
Fault diagnosis Fault 

detection 
Fault diagnosis 
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Fig. 13.  PCA score plot of rotor speed under normal and fault conditions. 
 

0 500 1000 1500
0

0.05

0.1

Case (a): ORF

SS
E 

D
is

ta
nc

e

 

 

0 200 400 600 800 1000
0

0.2

Case (a): ORF

SS
E 

D
is

ta
nc

e

 

 

0 500 1000 1500
0

0.05

0.1

Case (b): IRF

SS
E 

D
is

ta
nc

e

 

 

0 200 400 600 800 1000
0

0.2

Case (b): IRF

SS
E 

D
is

ta
nc

e

 

 

0 500 1000 1500
0

0.05

0.1

Case (c): BBF

SS
E 

D
is

ta
nc

e

 

 

0 200 400 600 800 1000
0

0.2

Case (c): BBF

SS
E 

D
is

ta
nc

e

 

 
BFF ORF IRF BBF

BFF ORF IRF BBF

BFF ORF IRF BBF BFF ORF IRF BBF

BFF ORF IRF BBF

BFF ORF IRF BBF

                     Scenario 1                                                Scenario 2 

0 500 1000 1500
0

0.05

0.1

Case (a): ORFSS
E 

D
is

ta
nc

e

0 500 1000 1500
0

0.5

Case (a): ORFSS
E 

D
is

ta
nc

e

 

 

0 500 1000 1500
0

0.02
0.04
0.06
0.08

Case (b): IRF

SS
E 

D
is

ta
nc

e

0 500 1000 1500
0

0.2

0.4

0.6

Case (b): IRF

SS
E 

D
is

ta
nc

e

 

 

0 500 1000 1500
0

0.05

0.1

Case (c): BBF

SS
E 

D
is

ta
nc

e

 

 

0 500 1000 1500
0

0.5

Case (c): BBF

SS
E 

D
is

ta
nc

e

 

 

BFF ORF IRF BBF

BFF ORF IRF BBF

BFF ORF IRF BBF

                     Scenario 3                                               Scenario 4 

Fig.12. SSE distance calculated by AVPCA for bearing fault diagnosis 
under variable speed with four scenarios. 
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+A) and the test database vector Mb

new is negative (let Mb
new be 

-A±ε), i.e.,  

( )

2 2

2                                    2  via Classical PCA

new m
b bM M A A

A

e

e

X = - = - ± -

= ±
         

(23a) 

2 2

2 2

( ) ( )

                                                 via AVPCA

new m
b bM M abs A abs Ae

e e

X = - = - ± -

= =
        

(23b)

  Thus, the total SSE is magnified instead of minimized via the 
classical PCA (23a). However, by considering the absolute 
value of the weights via the proposed AVPCA, the total SSE is 
always minimized regardless of the weight’s sign (23b). This 
simple addition permits AVPCA to achieve the success rate 
(i.e., fault detection rate) of 90%, which is greater than the 70% 
success rate achieved with the classical PCA. A similar result 
was obtained for the fault diagnosis; the success rates with 
AVPCA and the classical PCA were 73.3% and 50%, 
respectively. 

 
Case B. Variable speed environment: In this case, an even 

more challenging though more realistic situation, was 
considered using four different variable speed scenarios. 
AVPCA was capable of detecting the bearing faults with a 75% 
success rate and could diagnose those faults with a 60% success 
rate in the 20 tests. In contrast, the classical PCA did not 
effectively detect the bearing faults (45%) and essentially, 
could not diagnose the detected faults (28.3%), which is due to 

the overlap between the healthy bearing conditions (dependent 
faults) and the speed variation. 

 

F. Comparison of rotor speed-based and vibration-based 
methods using AVPCA for BFD  

To explore the advantage of rotor speed-based approach over 
vibration-based BFD, the success rates under constant and 
variable speed environments are compared in Table VII. Both 
methods are implemented using the proposed AVPCA. 

 

 
 
Table VII shows that a vibration-based method using 

AVPCA was capable of detecting the bearing faults with a 
92.5% success rate and could diagnose those faults with a 
76.7% success rate under constant speed environment, which is 
slightly better than the proposed rotor speed-based method. 
However, under the variable speed environment, the rotor 
speed-based method, which detected and diagnosed the bearing 
faults with a 75% and 60% success rate, respectively, was able 
to achieve a significantly higher success rate than the 
vibration-based method. These results highlight the benefit of 
the proposed RSB-BFD using AVPCA under the varying speed 
environment where the vibration signal from the bearing is 
affected by operation, which makes diagnosis difficult. This 
difficulty results from the variation of diagnostic features 
caused primarily by speed variations, low energy of sought 
features, and high noise levels. 

 

VI. CONCLUDING REMARKS  
In this paper, a novel bearing fault diagnosis method, the 

rotor speed-based bearing fault diagnosis (RSB-BFD), was 
proposed. Because the proposed method was only based on 
rotor speed signals, it is beneficial in terms of system cost and 
simplicity. To address the difficulty caused by the overlapping 
conditions, the classical PCA was modified to AVPCA, in 
which the PCA bases are evaluated using the absolute value of 
weights and SSE distances.  

The proposed method was examined under both a constant 
speed and variable speed environment, where the load 
remained constant. Three different bearing faults (outer-race 
fault, inner-race fault, and ball fault) were artificially 
introduced to demonstrate the performance of the proposed 
method. A set of experiments showed that the proposed 
RSB-BFD improved the fault detection and fault diagnosis 
performance by more than 20% in the constant speed case and 
by 30% in the variable speed case. Comparative studies 
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Fig. 14. Comparison of AVPCA and classical PCA for RSB-BFD in both 
constant and variable speed environments in terms of the success rate of 
fault detection and diagnosis. 

TABLE VII. SUMMARY OF BFD EFFICIENCY FOR ROTOR SPEED-BASED AND 
VIBRATION-BASED UNDER CONSTANT AND VARIABLE SPEED ENVIRONMENTS 

 Constant speed Variable speed 
Task 

 

Method 
Fault 

detection 
Fault diagnosis Fault 

detection 
Fault diagnosis 
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between AVPCA and the classical PCA, and between the rotor 
speed-based and the vibration-based methods showed the 
effectiveness of the proposed method.  

For future work, field tests will be conducted under real 
conditions including the influence of load variations, motor 
types, bearing types, and initial conditions. To make the 
proposed algorithm more adequate in real environment, it is 
also necessary to improve the ability of distinguishing the fault 
from other sources of speed oscillation. 
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